Affiliation:
1. School of Mathematics, Iran University of Science and Technology , P.O. Box 16844-13114 , Narmak , Tehran , Iran
2. Department of Mathematics, Aalto University , P.O. Box 11100 , FI-00076 Aalto , Finland
Abstract
Abstract
We consider the nonlocal quasilinear elliptic problem:
−
Δ
m
u
(
x
)
=
H
(
x
)
(
(
I
α
*
(
Q
f
(
u
)
)
)
(
x
)
)
β
g
(
u
(
x
)
)
in
Ω
,
-{\Delta }_{m}u\left(x)=H\left(x){(\left({I}_{\alpha }* \left(Qf\left(u)))\left(x))}^{\beta }g\left(u\left(x))\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,
where
Ω
\Omega
is a smooth domain in
R
N
{{\mathbb{R}}}^{N}
,
β
≥
0
\beta \ge 0
,
I
α
{I}_{\alpha }
,
0
<
α
<
N
0\lt \alpha \lt N
, stands for the Riesz potential,
f
,
g
:
[
0
,
a
)
→
[
0
,
∞
)
f,g:\left[0,a)\to \left[0,\infty )
,
0
<
a
≤
∞
0\lt a\le \infty
, are monotone nondecreasing functions with
f
(
s
)
,
g
(
s
)
>
0
f\left(s),g\left(s)\gt 0
for
s
>
0
s\gt 0
, and
H
,
Q
:
Ω
→
R
H,Q:\Omega \to {\mathbb{R}}
are nonnegative measurable functions. We provide explicit quantitative pointwise estimates on positive weak supersolutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue problems in bounded domains for various nonlinearities
f
f
and
g
g
such as
e
u
,
(
1
+
u
)
p
{e}^{u},{\left(1+u)}^{p}
, and
(
1
−
u
)
−
p
{\left(1-u)}^{-p}
,
p
>
1
p\gt 1
. We also discuss the Liouville-type results in unbounded domains.
Reference46 articles.
1. N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z. 248 (2004), 423–443.
2. A. Aghajani, A. M. Tehrani, and N. Ghoussoub, Pointwise lower bounds for solutions of semilinear elliptic equations and applications, Adv. Nonlinear Stud. 14 (2014), 839–856.
3. A. Aghajani and A. M. Tehrani, Pointwise bounds for positive supersolutions of nonlinear elliptic problems involving the p-Laplacian, Electron. J. Differential Equations (2017), Paper No. 46, 14 pp.
4. C. O. Alves and M. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Differential Equations 257 (2014), 4133–4164.
5. C. O. Alves and M. Yang, Multiplicity and concentration of solutions for a quasilinear Choquard equation, J. Math. Phys. 55 (2014), 061502, 21 pp.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献