Affiliation:
1. Community College of Rafha, Northern Border University, 73222 Arar, Kingdom of Saudi Arabia; and Mathematics Department, Faculty of Sciences Tunis El Manar, 1060 Tunis, Tunisia
2. College of Sciences at Dammam, University of Imam Abdulrahman Bin Faisal, 31441 Dammam, Kingdom of Saudi Arabia
Abstract
Abstract
In the present paper, we investigate the existence of
solutions for the following inhomogeneous singular equation involving
the
{p(x)}
-biharmonic operator:
\left\{\begin{aligned} &\displaystyle\Delta(\lvert\Delta u\rvert^{p(x)-2}%
\Delta u)=g(x)u^{-\gamma(x)}\mp\lambda f(x,u)&&\displaystyle\phantom{}\text{in%
}\Omega,\\
&\displaystyle\Delta u=u=0&&\displaystyle\phantom{}\text{on }\partial\Omega,%
\end{aligned}\right.
where
{\Omega\subset\mathbb{R}^{N}}
(
{N\geq 3}
) is a bounded domain with
{C^{2}}
boundary,
λ is a positive parameter,
{\gamma:\overline{\Omega}\rightarrow(0,1)}
is a continuous function,
{p\kern-1.0pt\in\kern-1.0ptC(\overline{\Omega})}
with
{1\kern-1.0pt<\kern-1.0ptp^{-}\kern-1.0pt:=\kern-1.0pt\inf_{x\in\Omega}p(x)%
\kern-1.0pt\leq\kern-1.0ptp^{+}\kern-1.0pt:=\kern-1.0pt\sup_{x\in\Omega}p(x)%
\kern-1.0pt<\kern-1.0pt\frac{N}{2}}
, as usual,
{p^{*}(x)\kern-1.0pt=\kern-1.0pt\frac{Np(x)}{N-2p(x)}}
,
g\in L^{\frac{p^{*}(x)}{p^{*}(x)+\gamma(x)-1}}(\Omega),
and
{f(x,u)}
is assumed to satisfy
assumptions (f1)–(f6) in Section 3. In the proofs of our results, we use variational techniques and monotonicity arguments combined with the theory of the generalized Lebesgue Sobolev spaces. In addition, an example to illustrate our result is given.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献