Affiliation:
1. Dipartimento di Matematica, Università di Pisa, Via F. Buonarroti 1/c, 56127 , Pisa , Italy
2. Dipartimento di Matematica e Fisica, Università degli Studi della Campania “Luigi Vanvitelli”, viale Lincoln 5 , 81100 Caserta , Italy
Abstract
Abstract
We present a survey concerning the convergence, as the viscosity goes to zero, of the solutions to the three-dimensional evolutionary Navier-Stokes equations to solutions of the Euler equations. After considering the Cauchy problem, particular attention is given to the convergence under Navier slip-type boundary conditions. We show that, in the presence of flat boundaries (typically, the half-space case), convergence holds, uniformly in time, with respect to the initial data’s norm. In spite of this result (and of a similar result for arbitrary two-dimensional domains), strong inviscid limit results are proved to be false in general domains, in correspondence to a very large family of smooth initial data. In Section 6, we present a result in this direction.
Reference89 articles.
1. Y. Achdou, O. Pironneau, and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys. 157 (1998), 187–218.
2. E. Bänsch, Finite element discretization of the Navier-Stokesequations with a free capillary surface, Numer. Math. 88 (2001), 203–235.
3. C. Bardos, Existence et unicité de la solution de l’équation d’Euler en dimension deux, (French), J. Math. Anal. Appl. 40 (1972), 769–790.
4. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1999.
5. G. S. Beavers and D. D. Joseph, Boundary conditions at a naturallypermeable wall, J. Fluid Mech. 30 (1967), 197–207.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献