Affiliation:
1. Department of Mathematics and Statics , Guangdong University of Finance and Economics , Guangzhou 510320 , P. R. China
Abstract
Abstract
In this paper, we present a new method for converting boundary value problems of impulsive fractional differential equations to integral equations. Applications of this method are given to solve some types of anti-periodic boundary value problems for impulsive fractional differential equations. Firstly by using iterative method, we prove existence and uniqueness of solutions of Cauchy problems of differential equations involving Caputo fractional derivative, Riemann–Liouville and Hadamard fractional derivatives with order
q
∈
(
0
,
1
)
{q\in(0,1)}
, see Theorem 2, Theorem 4, Theorem 6 and Theorem 8. Then we obtain exact expression of piecewise continuous solutions of these fractional differential equations see Theorem 1, Theorem 2, Theorem 3 and Theorem 4. Finally, four classes of integral type anti-periodic boundary value problems of singular fractional differential equations with impulse effects are proposed.
Sufficient conditions are given for the existence of solutions of these problems. See Theorems 4.1–4.4. We allow the nonlinearity
p
(
t
)
f
(
t
,
x
)
{p(t)f(t,x)}
in fractional differential equations to be singular at
t
=
0
,
1
{t=0,1}
and be involved a super-linear and sub-linear term. The analysis relies on Schaefer’s fixed point theorem. In order to avoid misleading readers, we correct the results in [28] and [65]. We establish sufficient conditions for the existence of solutions of an anti-periodic boundary value problem for impulsive fractional differential equation. The results in [68] are complemented. The results in [81] are corrected. See Lemma 5.1, Lemma 5.7, Lemma 5.10 and Lemma 5.13.
Reference84 articles.
1. R. P. Agarwal, M. Benchohra and S. Hamani,
A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions,
Acta Appl. Math. 109 (2010), 973–1033.
2. R. P. Agarwal, M. Benchohra and B. A. Slimani,
Existence results for differential equations with fractional order and impulses,
Mem. Differ. Equ. Math. Phys. 44 (2008), 1–21.
3. B. Ahmad and J. J. Nieto,
Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory,
Topol. Methods Nonlinear Anal. 35 (2010), 295–304.
4. B. Ahmad and S. K. Ntouyas,
A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations,
Fract. Calc. Appl. Anal. 17 (2014), no. 2, 348–360.
5. B. Ahmad and S. K. Ntouyas,
On Hadamard fractional integro-differential boundary value problems,
J. Appl. Math. Comput. 47 (2014), 1–13.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献