A new method for converting boundary value problems for impulsive fractional differential equations to integral equations and its applications

Author:

Liu Yuji1

Affiliation:

1. Department of Mathematics and Statics , Guangdong University of Finance and Economics , Guangzhou 510320 , P. R. China

Abstract

Abstract In this paper, we present a new method for converting boundary value problems of impulsive fractional differential equations to integral equations. Applications of this method are given to solve some types of anti-periodic boundary value problems for impulsive fractional differential equations. Firstly by using iterative method, we prove existence and uniqueness of solutions of Cauchy problems of differential equations involving Caputo fractional derivative, Riemann–Liouville and Hadamard fractional derivatives with order q ( 0 , 1 ) {q\in(0,1)} , see Theorem 2, Theorem 4, Theorem 6 and Theorem 8. Then we obtain exact expression of piecewise continuous solutions of these fractional differential equations see Theorem 1, Theorem 2, Theorem 3 and Theorem 4. Finally, four classes of integral type anti-periodic boundary value problems of singular fractional differential equations with impulse effects are proposed. Sufficient conditions are given for the existence of solutions of these problems. See Theorems 4.1–4.4. We allow the nonlinearity p ( t ) f ( t , x ) {p(t)f(t,x)} in fractional differential equations to be singular at t = 0 , 1 {t=0,1} and be involved a super-linear and sub-linear term. The analysis relies on Schaefer’s fixed point theorem. In order to avoid misleading readers, we correct the results in [28] and [65]. We establish sufficient conditions for the existence of solutions of an anti-periodic boundary value problem for impulsive fractional differential equation. The results in [68] are complemented. The results in [81] are corrected. See Lemma 5.1, Lemma 5.7, Lemma 5.10 and Lemma 5.13.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference84 articles.

1. R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010), 973–1033.

2. R. P. Agarwal, M. Benchohra and B. A. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differ. Equ. Math. Phys. 44 (2008), 1–21.

3. B. Ahmad and J. J. Nieto, Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray–Schauder degree theory, Topol. Methods Nonlinear Anal. 35 (2010), 295–304.

4. B. Ahmad and S. K. Ntouyas, A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations, Fract. Calc. Appl. Anal. 17 (2014), no. 2, 348–360.

5. B. Ahmad and S. K. Ntouyas, On Hadamard fractional integro-differential boundary value problems, J. Appl. Math. Comput. 47 (2014), 1–13.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3