Boundary blow-up solutions to the Monge-Ampère equation: Sharp conditions and asymptotic behavior

Author:

Zhang Xuemei1,Feng Meiqiang2

Affiliation:

1. School of Mathematics and Physics, North China Electric Power University, Beijing, 102206, PR China

2. School of Applied Science, Beijing Information Science & Technology University, Beijing, 100192, PR China

Abstract

Abstract Consider the boundary blow-up Monge-Ampère problem $$\begin{array}{} \displaystyle M[u]=K(x)f(u) \mbox{ for } x \in {\it\Omega},\; u(x)\rightarrow +\infty \mbox{ as } {\rm dist}(x,\partial {\it\Omega})\rightarrow 0. \end{array}$$ Here M[u] = det (uxixj) is the Monge-Ampère operator, and Ω is a smooth, bounded, strictly convex domain in ℝN (N ≥ 2). Under K(x) satisfying appropriate conditions, we first prove that the boundary blow-up Monge-Ampère problem has a strictly convex solution if and only if f satisfies Keller-Osserman type condition. Then the asymptotic behavior of strictly convex solutions to the boundary blow-up Monge-Ampère problem is considered under weaker condition with respect to previous references. Finally, if f does not satisfy Keller-Osserman type condition, we show the existence of strictly convex solutions under different conditions on K(x). The proof combines standard techniques based upon the sub-supersolution method with non-standard arguments, such as the Karamata regular variation theory.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference122 articles.

1. Boundary blow-up in nonlinear elliptic equations of Bieberbach-Rademacher type;Trans. Amer. Math. Soc.,2007

2. Sharp conditions for the existence of boundary blow-up solutions to the Monge-Ampère equation;Calc. Var. Partial Differential Equations,2018

3. On boundary blow-up problems for the complex Monge-Ampère equation;Proc. Amer. Math. Soc.,2008

4. Boundary behavior of large solutions to the Monge-Ampère equations with weights;J. Differ. Equations,2015

5. A unified asymptotic behavior of boundary blow-up solutions to elliptic equations;Differ. Integral Equ.,2013

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3