Nonoccurrence of Lavrentiev gap for a class of functionals with nonstandard growth

Author:

De Filippis Filomena1,Leonetti Francesco1,Treu Giulia2

Affiliation:

1. DISIM, Università degli Studi dell’Aquila , Via Vetoio snc , Coppito , 67100 L’Aquila , Italy

2. Dipartimento di Matematica, Università degli Studi di Padova , Via Trieste , 63-35121 Padova , Italy

Abstract

Abstract We consider the functional ( u ) Ω f ( x , D u ( x ) ) d x , {\mathcal{ {\mathcal F} }}\left(u):= \mathop{\int }\limits_{\Omega }f\left(x,Du\left(x)){\rm{d}}x, where f ( x , z ) f\left(x,z) satisfies a ( p , q ) \left(p,q) -growth condition with respect to z z and can be approximated by means of a suitable sequence of functions. We consider B R Ω {B}_{R}\hspace{0.33em}\Subset \hspace{0.33em}\Omega and the spaces X = W 1 , p ( B R , R N ) and Y = W 1 , p ( B R , R N ) W loc 1 , q ( B R , R N ) . X={W}^{1,p}\left({B}_{R},{{\mathbb{R}}}^{N})\hspace{1.0em}\hspace{0.1em}\text{and}\hspace{0.1em}\hspace{1.0em}Y={W}^{1,p}\left({B}_{R},{{\mathbb{R}}}^{N})\cap {W}_{\hspace{0.1em}\text{loc}\hspace{0.1em}}^{1,q}\left({B}_{R},{{\mathbb{R}}}^{N}). We prove that the lower semicontinuous envelope of Y {\mathcal{ {\mathcal F} }}{| }_{Y} coincides with {\mathcal{ {\mathcal F} }} or, in other words, that the Lavrentiev term is equal to zero for any admissible function u W 1 , p ( B R , R N ) u\in {W}^{1,p}\left({B}_{R},{{\mathbb{R}}}^{N}) . We perform the approximations by means of functions preserving the values on the boundary of B R {B}_{R} .

Publisher

Walter de Gruyter GmbH

Reference43 articles.

1. E. Acerbi, G. Bouchitté, and I. Fonseca, Relaxation of convex functionals: the gap problem, Ann. Inst. H. Poincaré Anal. Anal. Non Lineaire 20 (2003), no. 3, 359–390.

2. G. Alberti and P. Majer, Gap phenomenon for some autonomous functionals, J. Convex Analysis 1 (1994), 31–45.

3. G. Alberti and F. Serra Cassano, Non-occurrence of gap for one-dimensional autonomous functionals, in: Calculus of variations, homogenization and continuum mechanics (Marseille, 1993), Ser. Adv. Math. Appl. Sci. 18 (1994), 1–17. World Scientific Publishing, River Edge, NJ.

4. A. K. Balci, L. Diening, and M. Surnachev, New examples on Lavrentiev gap using fractals, Calc. Var. Partial Differential Equations 59 (2020), 180.

5. J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), no. 4, 325–388.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regularity for multi-phase problems at nearly linear growth;Journal of Differential Equations;2024-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3