Positive solutions for diffusive Logistic equation with refuge

Author:

Sun Jian-Wen12

Affiliation:

1. School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, P.R. China

2. Institute for Mathematical Sciences, Renmin University of China, Beijing, 100872, P.R. China

Abstract

Abstract In this paper, we study the stationary solutions of the Logistic equation $$\begin{array}{} \displaystyle u_t=\mathcal {D}[u]+\lambda u-[b(x)+\varepsilon]u^p \text{ in }{\it\Omega} \end{array}$$ with Dirichlet boundary condition, here 𝓓 is a diffusion operator and ε > 0, p > 1. The weight function b(x) is nonnegative and vanishes in a smooth subdomain Ω0 of Ω. We investigate the asymptotic profiles of positive stationary solutions with the critical value λ when ε is sufficiently small. We find that the profiles are different between nonlocal and classical diffusion equations.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference48 articles.

1. Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions;J. Differential Equations,2019

2. A logistic equation with refuge and nonlocal diffusion;Commun. Pure Appl. Anal.,2009

3. On the positive solutions of semilinear equations Δu + λu – hup = 0 on the compact manifolds;Trans. Amer. Math. Soc.,1992

4. Scalar curvature and conformal deformation of Riemannian structure;J. Differential Geometry,1975

5. The periodic principal eigenvalues with applications to the nonlocal dispersal logistic equation;J. Differential Equations,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local diffusion vs. nonlocal dispersal in periodic logistic equations;Journal of Differential Equations;2023-05

2. Sharp patterns for some semilinear nonlocal dispersal equations;Journal d'Analyse Mathématique;2022-11-17

3. Sharp profiles for periodic logistic equation with nonlocal dispersal;Calculus of Variations and Partial Differential Equations;2020-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3