Affiliation:
1. School of Mathematics and Statistics, Changsha University of Science and Technology , Changsha , Hunan 410114 , P.R. China
2. School of Mathematics and Statistics, HNP-LAMA, Central South University , Changsha , Hunan 410083 , P.R. China
Abstract
Abstract
This work is concerned with the following Klein-Gordon-Maxwell system:
−
Δ
u
+
V
(
x
)
u
−
(
2
ω
+
ϕ
)
ϕ
u
=
f
(
u
)
,
x
∈
R
2
,
Δ
ϕ
=
(
ω
+
ϕ
)
u
2
,
x
∈
R
2
,
\left\{\begin{array}{ll}-\Delta u+V\left(x)u-\left(2\omega +\phi )\phi u=f\left(u),\hspace{1.0em}& x\in {{\mathbb{R}}}^{2},\\ \Delta \phi =\left(\omega +\phi ){u}^{2},\hspace{1.0em}& x\in {{\mathbb{R}}}^{2},\end{array}\right.
where
ω
>
0
\omega \gt 0
is a constant,
u
,
ϕ
:
R
2
→
R
u,\phi :{{\mathbb{R}}}^{2}\to {\mathbb{R}}
,
V
∈
C
(
R
2
,
R
)
V\in {\mathcal{C}}\left({{\mathbb{R}}}^{2},{\mathbb{R}})
, and
f
∈
C
(
R
,
R
)
f\in {\mathcal{C}}\left({\mathbb{R}},{\mathbb{R}})
obeys exponential critical growth in the sense of the Trudinger-Moser inequality. We give some new sufficient conditions on
f
f
, specifically related to exponential growth, to obtain the existence of nontrivial solutions. Our results improve and extend the previous results. In particular, we give a more precise estimation than the ones in the existing literature about the minimax level.
Reference35 articles.
1. F. S. B. Albuquerque and L. Li, A nonlinear Klein-Gordon-Maxwell system in R2 involving singular and vanishing potentials, Z. Anal. Anwend. 38 (2019), 231–247.
2. A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations, Topol. Methods Nonlinear Anal. 35 (2010), 33–42.
3. A. Azzollini, L. Pisani, and A. Pomponio, Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), 449–463.
4. S. Adachi and K. Tanaka, Trudinger type inequalities in RN and their best exponents, Proc. Amer. Math. Soc. 128 (2000), 2051–2057.
5. V. Benci and D. Fortunato, The nonlinear Klein-Gordon equation coupled with the Maxwell equations, Nonlinear Anal. 47 (2001), 6065–6072.