Coercive elliptic systems with gradient terms

Author:

Filippucci Roberta1,Vinti Federico2

Affiliation:

1. 1Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy

2. 2Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy

Abstract

AbstractIn this paper we give a classification of positive radial solutions of the following system:$\Delta u=v^{m},\quad\Delta v=h(|x|)g(u)f(|\nabla u|),$in the open ball ${B_{R}}$, with ${m>0}$, and f, g, h nonnegative nondecreasing continuous functions. In particular, we deal with both explosive and bounded solutions. Our results involve, as in [27], a generalization of the well-known Keller–Osserman condition, namely, ${\int_{1}^{\infty}(\int_{0}^{s}F(t)\,dt)^{-m/(2m+1)}\,ds<\infty}$, where ${F(t)=\int_{0}^{t}f(s)\,ds}$. Moreover, in the second part of the paper, the p-Laplacian version, given by ${\Delta_{p}u=v^{m}}$, ${\Delta_{p}v=f(|\nabla u|)}$, is treated. When ${p\geq 2}$, we prove a necessary condition for the existence of a solution with at least a blow up component at the boundary, precisely ${\int_{1}^{\infty}(\int_{0}^{s}F(t)\,dt)^{-m/(mp+p-1)}s^{(p-2)(p-1)/(mp+p-1)}% \,ds<\infty}$.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference58 articles.

1. Classification of radial solutions for semilinear elliptic systems with nonlinear gradient terms;Nonlinear Anal.,2015

2. Blow-up rates and uniqueness of large solutions for elliptic equations with nonlinear gradient term and singular or degenerate weights;Manuscripta Math.,2013

3. Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case;Accad. Naz. Lincei Conv. Lincei,1986

4. Large solutions for a system of elliptic equations arising from fluid dynamics;SIAM J. Math. Anal.,2005

5. Existence of entire solutions for semilinear elliptic systems under the Keller–Osserman condition;Electron. J. Differential Equations,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3