A few problems connected with invariant measures of Markov maps - verification of some claims and opinions that circulate in the literature

Author:

Bugiel Peter1,Wędrychowicz Stanisław2,Rzepka Beata2

Affiliation:

1. Faculty of Mathematics and Computer Science , Jagiellonian University Cracow (Kraków) , Cracow , Poland

2. Department of Nonlinear Analysis , Rzeszów University of Technology , al. Powstanców Warszawy 8, 35-959 , Rzeszów , Poland

Abstract

Abstract It is well known that C 2-transformation φ of the unit interval into itself with a Markov partition (2.1) π = {Ik : kK} admits φ-invariant density g (g ≥ 0, ∥g∥ = 1) if: (2.2) ∣(φn )′∣ ≥ C 1 > 1 for some n (expanding condition); (2.3) ∣φ″(x)/(φ′(y))2∣ ≤ C 2 < ∞ (second derivative condition); and (2.4) #π < ∞ or φ (Ik ) = [0, 1], for each Ik π. If (2.4) is deleted, then the situation dramatically changes. The cause of this fact was elucidated in connection with so-called Adler’s Theorem ([1] and [2]). However after that time in the literature occur claims and opinions concerning the existence of invariant densities and their properties for Markov Maps, which satisfy (2.2), (2.3) and do not satisfy (2.4), revealing unacquaintance with that question. In this note we discuss the problems arising from the mentioned claims and opinions. Some solutions of that problems are given, in a systematic way, on the base of the already published results and by providing appropriate examples.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference27 articles.

1. P. Bugiel, A note on invariant measures for Markov maps of an interval, Zeitschrift für Wahrscheinlichkeitstheorie und verwande Gebiete 70 (1985), 345–349; Zbl. Math. 606.28013; MR 87a:28019.

2. P. Bugiel, Correction and addendum to: A note on invariant measures for Markov maps of an interval, Probability Theory Rel. Fields 76 (1987), 255–256; (formerly: Zeitschrift für Wahrscheinlichkeitstheorie und verwande Gebiete); Zbl. Math. 651.28010; MR 88i:28028.

3. A. Lasota and J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Transactions of the Amarican Mathematical Society Vol. 186 (1973), 481–488.

4. M. Iosifescu, Mixing properties for f-expansions, in: Probab. Theory and Math. Stat., Prohorov et al. (eds.), VNU Science Press 1987, Vol. 2 (1987), 1–8.

5. M. Iosifescu and S. Grigorescu, Dependence with Complete Connections and its Applications, Cambridge University Press, Cambridge Tracts in Mathematics 96, Cambridge, 1991.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3