Affiliation:
1. Departamento de Matemática, Universidade de Brasília , 70.910-900 , Brasília - DF , Brazil
Abstract
Abstract
We show existence and concentration results for a class of p&q critical problems given by
−
d
i
v
a
ϵ
p
|
∇
u
|
p
ϵ
p
|
∇
u
|
p
−
2
∇
u
+
V
(
z
)
b
|
u
|
p
|
u
|
p
−
2
u
=
f
(
u
)
+
|
u
|
q
⋆
−
2
u
in
R
N
,
$$-div\left(a\left(\epsilon^{p}|\nabla u|^{p}\right) \epsilon^{p}|\nabla u|^{p-2} \nabla u\right)+V(z) b\left(|u|^{p}\right)|u|^{p-2} u=f(u)+|u|^{q^{\star}-2} u\, \text{in} \,\mathbb{R}^{N},$$
where u ∈ W
1,p
(ℝ
N
) ∩ W
1,q
(ℝ
N
), ϵ > 0 is a small parameter, 1 < p ≤ q < N, N ≥ 2 and q
* = Nq/(N − q). The potential V is positive and f is a superlinear function of C
1 class. We use Mountain Pass Theorem and the penalization arguments introduced by Del Pino & Felmer’s associated to Lions’ Concentration and Compactness Principle in order to overcome the lack of compactness.
Reference35 articles.
1. C.O. Alves, M. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, to appear in Z. Angew. Math. Phys.
2. C.O. Alves, A. R. da Silva, Multiplicity and concentration behavior of solutions for a quasilinear problem involving N−functions via penalization method, Electron. J. Differential Equations 2016, . 158, 24 pp.
3. C. O. Alves, J. M. B. do Ó, D. S. Pereira, Local mountain-pass for a elliptic problems in RN involving critical growth, Nonlinear Analysis. (2001), no. 46, 495-510.
4. C. O. Alves, G. M. Figueiredo Multiplicity and Concentration of Positive Solutions for a Class of Quasilinear Problems. Advanced Nonlinear Studies 11 (2011), 265-295.
5. A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14, (1973), 349-381.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献