On regular solutions to compressible radiation hydrodynamic equations with far field vacuum

Author:

Li Hao1,Zhu Shengguo2

Affiliation:

1. School of Mathematical Sciences, Fudan University , Shanghai 200433 , P. R. China

2. School of Mathematical Sciences, CMA-Shanghai, and MOE-LSC, Shanghai Jiao Tong University , Shanghai 200240 , P. R. China

Abstract

Abstract The Cauchy problem for three-dimensional (3D) isentropic compressible radiation hydrodynamic equations is considered. When both shear and bulk viscosity coefficients depend on the mass density ρ \rho in a power law ρ δ {\rho }^{\delta } (with 0 < δ < 1 0\lt \delta \lt 1 ), based on some elaborate analysis of this system’s intrinsic singular structures, we establish the local-in-time well-posedness of regular solution with arbitrarily large initial data and far field vacuum in some inhomogeneous Sobolev spaces by introducing some new variables and initial compatibility conditions. Note that due to the appearance of the vacuum, the momentum equations are degenerate both in the time evolution and viscous stress tensor, which, along with the strong coupling between the fluid and the radiation field, make the study on corresponding well-posedness challenging. For proving the existence, we first introduce an enlarged reformulated structure by considering some new variables, which can transfer the degeneracies of the radiation hydrodynamic equations to the possible singularities of some special source terms, and then carry out some singularly weighted energy estimates carefully designed for this reformulated system.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3