Affiliation:
1. School of Mathematics and Statistics, Guangdong University of Technology , Guangzhou 510006 , Guangdong , P. R. China
2. Department of Applied Mathematics, National University of Kaohsiung , Kaohsiung 811 , Taiwan
Abstract
Abstract
We study the following Kirchhoff type equation:
−
a
+
b
∫
R
N
|
∇
u
|
2
d
x
Δ
u
+
u
=
k
(
x
)
|
u
|
p
−
2
u
+
m
(
x
)
|
u
|
q
−
2
u
in
R
N
,
$$\begin{equation*}\begin{array}{ll} -\left(a+b\int\limits_{\mathbb{R}^{N}}|\nabla u|^{2}\mathrm{d}x\right)\Delta u+u =k(x)|u|^{p-2}u+m(x)|u|^{q-2}u~~\text{in}~~\mathbb{R}^{N}, \end{array}
\end{equation*}$$
where N=3,
a
,
b
>
0
$ a,b \gt 0 $
,
1
<
q
<
2
<
p
<
min
{
4
,
2
∗
}
$ 1 \lt q \lt 2 \lt p \lt \min\{4, 2^{*}\} $
, 2≤=2N/(N − 2), k ∈ C (ℝ
N
) is bounded and m ∈ L
p/(p−q)(ℝ
N
). By imposing some suitable conditions on functions k(x) and m(x), we firstly introduce some novel techniques to recover the compactness of the Sobolev embedding
H
1
(
R
N
)
↪
L
r
(
R
N
)
(
2
≤
r
<
2
∗
)
$ H^{1}(\mathbb{R}^{N})\hookrightarrow L^{r}(\mathbb{R}^{N}) (2\leq r \lt 2^{*}) $
; then the Ekeland variational principle and an innovative constraint method of the Nehari manifold are adopted to get three positive solutions for the above problem.
Reference39 articles.
1. A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.
2. A. Arosio and S. Panizzi, On the well–posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), 305–330.
3. K.J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign–changing weight function, J. Differential Equations. 193 (2003), 481–499.
4. M.M. Cavalcanti, V.N. Domingos Cavalcanti and J.A. Soriano, Global existence and uniform decay rates for the Kirchhoff–Carrier equation with nonlinear dissipation, Adv. Differential Equations. 6 (2001), 701–730.
5. G. Che and H. Chen, Existence and multiplicity of solutions for Kirchhoff–Schrödinger–Poisson system with concave and convex nonlinearities, J. Korean Math. Soc. 57 (2020), 1551–1571.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献