On Cauchy problem for fractional parabolic-elliptic Keller-Segel model

Author:

Nguyen Anh Tuan12,Tuan Nguyen Huy12,Yang Chao34

Affiliation:

1. Division of Applied Mathematics, Science and Technology Advanced Institute, Van Lang University , Ho Chi Minh City , Vietnam

2. Faculty of Applied Technology, School of Engineering and Technology, Van Lang University , Ho Chi Minh City , Vietnam

3. College of Mathematical Sciences, Harbin Engineering University , 150001 , Harbin , People’s Republic of China

4. Faculty of Applied Mathematics, AGH University of Science and Technology , 30-059 Kraków , Poland

Abstract

Abstract In this paper, we concern about a modified version of the Keller-Segel model. The Keller-Segel is a system of partial differential equations used for modeling Chemotaxis in which chemical substances impact the movement of mobile species. For considering memory effects on the model, we replace the classical derivative with respect to time variable by the time-fractional derivative in the sense of Caputo. From this modification, we focus on the well-posedness of the Cauchy problem associated with such the model. Precisely, when the spatial variable is considered in the space R d {{\mathbb{R}}}^{d} , a global solution is obtained in a critical homogeneous Besov space with the assumption that the initial datum is sufficiently small. For the bounded domain case, by using a discrete spectrum of the Neumann Laplace operator, we provide the existence and uniqueness of a mild solution in Hilbert scale spaces. Moreover, the blowup behavior is also studied. To overcome the challenges of the problem and obtain all the aforementioned results, we use the Banach fixed point theorem, some special functions like the Mainardi function and the Mittag-Leffler function, as well as their properties.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3