Affiliation:
1. Dip. di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, Riemann International School of Mathematics, Villa Toeplitz via G.B. Vico 46 – 21100 , Varese , Italy
Abstract
Abstract
We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings
W
0
s
,
p
(
Ω
)
↪
L
q
(
Ω
)
,
{W}_{0}^{s,p}(\Omega )\hspace{0.33em}\hookrightarrow \hspace{0.33em}{L}^{q}(\Omega ),
where
N
≥
1
N\ge 1
,
0
<
s
<
1
0\lt s\lt 1
,
p
=
1
,
2
p=1,2
,
1
≤
q
<
p
s
∗
=
N
p
N
−
s
p
1\le q\lt {p}_{s}^{\ast }=\frac{Np}{N-sp}
, and
Ω
⊂
R
N
\Omega \subset {{\mathbb{R}}}^{N}
is a bounded smooth domain or the whole space
R
N
{{\mathbb{R}}}^{N}
. Our results cover the borderline case
p
=
1
p=1
, the Hilbert case
p
=
2
p=2
,
N
>
2
s
N\gt 2s
, and the so-called Sobolev limiting case
N
=
1
N=1
,
s
=
1
2
s=\frac{1}{2}
, and
p
=
2
p=2
, where a sharp asymptotic estimate is given by means of a limiting procedure. We apply the obtained results to prove existence and non-existence of solutions for a wide class of nonlocal partial differential equations.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献