Affiliation:
1. Departamento de Análisis Matemático, Universidad de Granada, Facultad de Ciencias, Avenida Fuentenueva s/n, 18071 Granada, Spain
Abstract
Abstract
In this paper we deal with the elliptic problem
$$\begin{array}{}
\begin{cases}
\displaystyle-{\it\Delta} u=\lambda u+\mu(x)\frac{|\nabla u|^q}{u^\alpha}+f(x)\quad &\text{ in }{\it\Omega},
\\
u \gt 0 \quad &\text{ in }{\it\Omega},
\\
u=0\quad &\text{ on }\partial{\it\Omega},
\end{cases}
\end{array}
$$
where Ω ⊂ ℝN is a bounded smooth domain, 0 ≨ μ ∈ L∞(Ω), 0 ≨ f ∈ Lp0(Ω) for some p0 >
$\begin{array}{}
\frac{N}{2}
\end{array}$, 1 < q < 2, α ∈ [0 1] and λ ∈ ℝ. We establish existence and multiplicity results for λ > 0 and α < q – 1, including the non-singular case α = 0. In contrast, we also derive existence and uniqueness results for λ > 0 and q – 1 < α ≤ 1. We thus complement the results in [1, 2], which are concerned with α = q – 1, and show that the value α = q – 1 plays the role of a break point for the multiplicity/uniqueness of solution.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献