Subharmonic solutions of Hamiltonian systems displaying some kind of sublinear growth

Author:

Fonda Alessandro1,Toader Rodica2

Affiliation:

1. Dipartimento di Matematica e Geoscienze, Università di Trieste, P.le Europa 1, 34127 Trieste, Italy

2. Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy

Abstract

Abstract We prove the existence and multiplicity of subharmonic solutions for Hamiltonian systems obtained as perturbations of N planar uncoupled systems which, e.g., model some type of asymmetric oscillators. The nonlinearities are assumed to satisfy Landesman–Lazer conditions at the zero eigenvalue, and to have some kind of sublinear behavior at infinity. The proof is carried out by the use of a generalized version of the Poincaré–Birkhoff Theorem. Different situations, including Lotka–Volterra systems, or systems with singularities, are also illustrated.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference54 articles.

1. Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian;J. Differential Equations,2007

2. Periodic solutions of radially symmetric perturbations of Newtonian systems;Proc. Amer. Math. Soc.,2012

3. A higher dimensional Poincaré–Birkhoff theorem for Hamiltonian flows;Ann. Inst. H. Poincaré Anal. Non Linéaire,2017

4. Équations intégrales et solutions périodiques des systèmes différentiels non linéaires;Acad. Roy. Belg. Bull. Cl. Sci. (5),1969

5. Periodic perturbations of Hamiltonian systems;Adv. Nonlinear Anal.,2016

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3