Existence and concentration of ground-states for fractional Choquard equation with indefinite potential

Author:

Zhang Wen12,Yuan Shuai23,Wen Lixi23

Affiliation:

1. College of Science, Hunan University of Technology and Business , 410205 Changsha , Hunan , China

2. Department of Mathematics, University of Craiova , 200585 Craiova , Romania , China-Romania Research Center in Applied Mathematics

3. School of Mathematics and Statistics, HNP-LAMA, Central South University , 410083 Changsha , Hunan , China

Abstract

AbstractThis paper is concerned with existence and concentration properties of ground-state solutions to the following fractional Choquard equation with indefinite potential:(Δ)su+V(x)u=RNA(εy)u(y)pxyμdyA(εx)u(x)p2u(x),xRN,{\left(-\Delta )}^{s}u+V\left(x)u=\left(\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}\frac{A\left(\varepsilon y)| u(y){| }^{p}}{| x-y{| }^{\mu }}{\rm{d}}y\right)A\left(\varepsilon x)| u\left(x){| }^{p-2}u\left(x),\hspace{1em}x\in {{\mathbb{R}}}^{N},wheres(0,1)s\in \left(0,1),N>2sN\gt 2s,0<μ<2s0\lt \mu \lt 2s,2<p<2N2μN2s2\lt p\lt \frac{2N-2\mu }{N-2s}, andε\varepsilonis a positive parameter. Under some natural hypotheses on the potentialsVVandAA, using the generalized Nehari manifold method, we obtain the existence of ground-state solutions. Moreover, we investigate the concentration behavior of ground-state solutions that concentrate at global maximum points ofAAasε0\varepsilon \to 0.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3