Detection of driver drowsiness level using a hybrid learning model based on ECG signals

Author:

Xiong Hui12,Yan Yan123,Sun Lifei12ORCID,Liu Jinzhen12,Han Yuqing4,Xu Yangyang4

Affiliation:

1. School of Control Science and Engineering , Tiangong University , Tianjin , China

2. Key Laboratory of Intelligent Control of Electrical Equipment , Tiangong University , Tianjin , China

3. School of Artificial Intelligence , Tiangong University , Tianjin , China

4. Department of Neurosurgery , Tianjin Xiqing Hospital , Tianjin , China

Abstract

Abstract Objectives Fatigue has a considerable impact on the driver’s vehicle and even the driver’s own operating ability. Methods An intelligent algorithm is proposed for the problem that it is difficult to classify the degree of drowsiness generated by the driver during the driving process. By studying the driver’s electrocardiogram (ECG) during driving, two models were established to jointly classify the ECG signals as awake, stress, and fatigue or drowsiness states for drowsiness levels. Firstly, the deep learning method was used to establish the model_1 to predict the drowsiness of the original ECG, and model_2 was developed using the combination of principal component analysis (PCA) and weighted K-nearest neighbor (WKNN) algorithm to classify the heart rate variability characteristics. Then, the drowsiness prediction results of the two models were weighted according to certain rules, and the hybrid learning model combining dilated convolution and bidirectional long short-term memory network with PCA and WKNN algorithm was established, and the mixed model was denoted as DiCNN-BiLSTM and PCA-WKNN (DBPW). Finally, the validity of the DBPW model was verified by simulation of the public database. Results The experimental results show that the average accuracy, sensitivity and F1 score of the test model in the dataset containing multiple drivers are 98.79, 98.81, and 98.79 % respectively, and the recognition accuracy for drowsiness or drowsiness state is 99.33 %. Conclusions Using the proposed algorithm, it is possible to identify driver anomalies and provide new ideas for the development of intelligent vehicles.

Funder

Science and Technology Development Fund of Tianjin Education Commission

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3