Hand gesture recognition with deep residual network using Semg signal

Author:

Khattak Abid Saeed12,Zain Azlan bin Mohd1,Hassan Rohayanti Binti1,Nazar Fakhra3,Haris Muhammad12,Ahmed Bilal Ashfaq1

Affiliation:

1. Faculty of Computing , Universiti Teknologi Malaysia , 81310 Skudai , Johor , Malaysia

2. Department of Computer Science & Bioinformatics , Khushal Khan Khattak University Karak , , Karak , Khyber Pakhtunkhwa, Pakistan

3. Department of Computer Sciences & Information, Faculty of Basic and Applied Sciences Technology , University of Poonch Rawalakot , Shamsabad , Azad Jammu and Kashmir , India

Abstract

Abstract Objectives To design and develop a classifier, named Sewing Driving Training based Optimization-Deep Residual Network (SDTO_DRN) for hand gesture recognition. Methods The electrical activity of forearm muscles generates the signals that can be captured with Surface Electromyography (sEMG) sensors and includes meaningful data for decoding both muscle actions and hand movement. This research develops an efficacious scheme for hand gesture recognition using SDTO_DRN. Here, signal pre-processing is done through Gaussian filtering. Thereafter, desired and appropriate features are extracted. Following that, effective features are chosen using SDTO. At last, hand gesture identification is accomplished based on DRN and this network is effectively fine-tuned by SDTO, which is a combination of Sewing Training Based Optimization (STBO) and Driving Training Based Optimization (DTBO). The datasets employed for the implementation of this work are MyoUP Dataset and putEMG: sEMG Gesture and Force Recognition Dataset. Results The designed SDTO_DRN model has gained superior performance with magnificent results by delivering a maximum accuracy of 0.943, True Positive Rate (TPR) of 0.929, True Negative Rate (TNR) of 0.919, Positive Predictive Value (PPV) of 0.924, and Negative Predictive Value (NPV) of 0.924. Conclusions The hand gesture recognition using the proposed model is accurate and improves the effectiveness of the recognition.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3