Surface treatment of PET multifilament textile for biomedical applications: roughness modification and fibroblast viability assessment

Author:

Khoffi Foued123ORCID,Khalsi Yosri3,Chevrier Julie4,Kerdjoudj Halima45,Tazibt Abdel3,Heim Fréderic26ORCID

Affiliation:

1. Laboratoire de Génie Textile (LGTex) , Ksar-Hellal , Tunisia

2. Laboratoire de Physique et Mécanique Textiles (LPMT), ENSISA , Mulhouse , France

3. CRITT Techniques Jet Fluide et Usinage (TJFU) , Bar-Le-Duc , France

4. Université de Reims Champagne Ardenne, BIOS EA 4691 , Reims , France

5. UFR d’Odontologie, Université de Reims Champagne Ardenne , Reims , France

6. GEPROMED, Hôpitaux Universitaires de Strasbourg , Strasbourg , France

Abstract

Abstract Objectives The aim of this study was to investigate the potential of tuning the topography of textile surfaces for biomedical applications towards modified cell-substrate interactions. Methods For that purpose, a supercritical Nitrogen N2 jet was used to spray glass particles on multi-filament polyethylene terephthalate (PET) yarns and on woven fabrics. The influence of the jet projection parameters such as the jet pressure (P) and the standoff distance (SoD) on the roughness was investigated. Results The impact of the particles created local filament ruptures on the treated surfaces towards hairiness increase. The results show that the treatment increases the roughness by up to 17 % at P 300 bars and SoD 300 mm while the strength of the material is slightly decreased. The biological study brings out that proliferation can be slightly limited on a more hairy surface, and is increased when the surface is more flat. After 10 days of fibroblast culture, the cells covered the entire surface of the fabrics and had mainly grown unidirectionally, forming cell clusters oriented along the longitudinal axis of the textile yarns. Clusters were generated at yarn crossings. Conclusions This approach revealed that the particle projection technology can help tuning the cell proliferation on a textile surface.

Funder

Institut carnot ICEEL

Institut Carnot MICA

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3