Deep learning classification of EEG-based BCI monitoring of the attempted arm and hand movements

Author:

Taghi Zadeh Makouei Sahar1ORCID,Uyulan Caglar2ORCID

Affiliation:

1. Department of AI Engineering, Graduate School of Sciences , 232990 Uskudar University , Istanbul , Türkiye

2. Department of Mechanical Engineering, Faculty of Engineering and Architecture , 226844 İzmir Katip Çelebi University , İzmir , Türkiye

Abstract

Abstract Objectives The primary objective of this research is to improve the average classification performance for specific movements in patients with cervical spinal cord injury (SCI). Methods The study utilizes a low-frequency multi-class electroencephalography (EEG) dataset from Graz University of Technology. The research combines convolutional neural network (CNN) and long-short-term memory (LSTM) architectures to uncover neural correlations between temporal and spatial aspects of the EEG signals associated with attempted arm and hand movements. To achieve this, three different methods are used to select relevant features, and the proposed model’s robustness against variations in the data is validated using 10-fold cross-validation (CV). The research also investigates subject-specific adaptation in an online paradigm, extending movement classification proof-of-concept. Results The combined CNN-LSTM model, enhanced by three feature selection methods, demonstrates robustness with a mean accuracy of 75.75 % and low standard deviation (+/− 0.74 %) in 10-fold cross-validation, confirming its reliability. Conclusions In summary, this research aims to make valuable contributions to the field of neuro-technology by developing EEG-controlled assistive devices using a generalized brain-computer interface (BCI) and deep learning (DL) framework. The focus is on capturing high-level spatiotemporal features and latent dependencies to enhance the performance and usability of EEG-based assistive technologies.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3