On the Hermitian structures of the sequence of tangent bundles of an affine manifold endowed with a Riemannian metric

Author:

Boucetta Mohamed1

Affiliation:

1. Université Cadi-Ayyad , Faculté des sciences et techniques , BP 549 Marrakech Maroc

Abstract

Abstract Let (M, ∇, , ) be a manifold endowed with a flat torsionless connection r and a Riemannian metric , and (TkM) k ≥1 the sequence of tangent bundles given by TkM = T(Tk −1 M) and T 1 M = TM. We show that, for any k ≥ 1, TkM carries a Hermitian structure (Jk , gk ) and a flat torsionless connection k and when M is a Lie group and (∇, , ) are left invariant there is a Lie group structure on each TkM such that (Jk , gk , k ) are left invariant. It is well-known that (TM, J 1, g 1) is Kähler if and only if , is Hessian, i.e, in each system of affine coordinates (x 1, . . ., xn ), x i , x j = 2 φ x i x j \left\langle {{\partial _x}_{_i},{\partial _{{x_j}}}} \right\rangle = {{{\partial ^2}\phi } \over {{\partial _x}_{_i}{\partial _x}_j}} . Having in mind many generalizations of the Kähler condition introduced recently, we give the conditions on (∇, , ) so that (TM, J 1, g 1) is balanced, locally conformally balanced, locally conformally Kähler, pluriclosed, Gauduchon, Vaisman or Calabi-Yau with torsion. Moreover, we can control at the level of (∇, , ) the conditions insuring that some (TkM, Jk , gk ) or all of them satisfy a generalized Kähler condition. For instance, we show that there are some classes of (M, ∇, , ) such that, for any k ≥ 1, (TkM, Jk , gk ) is balanced non-Kähler and Calabi-Yau with torsion. By carefully studying the geometry of (M, ∇, , ), we develop a powerful machinery to build a large classes of generalized Kähler manifolds.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3