Deep convolutional neural network approach for forehead tissue thickness estimation

Author:

Manit Jirapong1,Schweikard Achim2,Ernst Floris2

Affiliation:

1. Institute for Robotics and Cognitive Systems, Graduate School for Computing in Medicine and Life Sciences, University of Lübeck, Germany

2. Institute for Robotics and Cognitive Systems, University of Lübeck, Germany

Abstract

AbstractIn this paper, we presented a deep convolutional neural network (CNN) approach for forehead tissue thickness estimation. We use down sampled NIR laser backscattering images acquired from a novel marker-less near-infrared laser-based head tracking system, combined with the beam’s incident angle parameter. These two-channel augmented images were constructed for the CNN input, while a single node output layer represents the estimated value of the forehead tissue thickness. The models were – separately for each subject – trained and tested on datasets acquired from 30 subjects (high resolution MRI data is used as ground truth). To speed up training, we used a pre-trained network from the first subject to bootstrap training for each of the other subjects. We could show a clear improvement for the tissue thickness estimation (mean RMSE of 0.096 mm). This proposed CNN model outperformed previous support vector regression (mean RMSE of 0.155 mm) or Gaussian processes learning approaches (mean RMSE of 0.114 mm) and eliminated their restrictions for future research.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3