Affiliation:
1. 1University Medicine Rostock, Department of Orthopaedics, Doberaner Straße 142, 18057 Rostock, Germany, phone: +49-381-494-9335, fax: +49-381-494-9335
Abstract
AbstractThe medial patellofemoral ligament (MPFL) is a key structure in the treatment of habitual and traumatic patellofemoral instability. However, there exists little knowledge about its behaviour during deep knee flexion after femoral refixation. Since improper femoral attachment sites may lead to unnatural length change patterns in the ligament and consequently to osteoarthritis due to pathological femoro-patellar contact pressure, the understanding of the patella kinematics and MPFL behaviour is crucial.The purpose of this numerical study was to compute the six-degree-of-freedom motion pattern of the human patella during deep knee flexion for systematic analysis of varying landmarks for the femoral attachment in medial patellofemoral ligament reconstruction surgery by means of multibody simulation.Therefore, based on a previously presented musculoskeletal model [1] the dynamic pathways of the patella were computed. Then, the spatial motion was approximated by rheonomic polynomials and exploited for systematic evaluation of the MPFL length change patterns. Hence, 16 femoral attachment points at a radius of 5 mm and 10 mm around the radiographic centre point [2] were defined and the absolute length changes were recorded during deep knee flexion to 120 degree.This approach allows for a systematic evaluation of numerous MPFL attachment sites while exploiting the physiological patella kinematics. The patella kinematics including shift, flexion, tilt and rotation as well as the MPFL length change patterns were consistent to in vitro and in vivo data in the literature [3–7] and therefore indicate validity of the numerical approach. The parameter study on the femoral attachment site should enable to determine the most isometric point and non-isometric variations corresponding to patellofemoral instability, arthritis or high graft load.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献