Affiliation:
1. 1University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, 18059 Rostock, Germany
Abstract
AbstractThe present work deals with the 3D printing of porous barium titanate ceramics. Barium titanate is a biocompatible material with piezoelectric properties. Due to insufficient flowability of the starting material for 3D printing, the barium titanate raw material has been modified in three different ways. Firstly, barium titanate powder has been calcined. Secondly, flow additives have been added to the powder. And thirdly, flow additives have been added to the calcined powder. Finally, a polymer has been added to the three materials and specimens have been printed from these three material mixtures. The 3D printed parts were then sintered at 1320°C. The sintering leads to shrinkage which differs between 29.51–71.53% for the tested material mixtures. The porosity of the parts is beneficial for cell growth which is relevant for future medical applications. The results reported in this study demonstrate the possibility to fabricate porous piezoelectric barium titanate parts with a 3D printer that can be used for medical applications. 3D printed porous barium titanate ceramics can especially be used as scaffold for bone tissue engineering, where the bone formation can be promoted by electrical stimulation.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献