A muscle model for hybrid muscle activation

Author:

Klauer Christian1,Irmer Maximilian1,Schauer Thomas1

Affiliation:

1. 1Control Systems Group, Technische Universität Berlin

Abstract

AbstractTo develop model-based control strategies for Functional Electrical Stimulation (FES) in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG) measurements – even during active FES. An Artificial Neural Network (ANN) is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Reference14 articles.

1. A myocontrolled neuropros-thesis integrated with a passive exoskeleton to support upper limb activities;Journal of Electromyography & Kinesiology,2014

2. Control system for neuro-prostheses integrating induced and volitional effort;Proc. of 9th IFAC Symposium on Biological and Medical Systems, BMS 2015,2015

3. Neuromuscular electrical stimulation in neurorehabilitation;Muscle & nerve,2007

4. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo;Journal of biomechanics,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3