GANs for generation of synthetic ultrasound images from small datasets

Author:

Maack Lennart1,Holstein Lennart2,Schlaefer Alexander2

Affiliation:

1. Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Am Schwarzenberg-Campus 3, Hamburg , Germany

2. Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg , Germany

Abstract

Abstract The task of medical image classification is increasingly supported by algorithms. Deep learning methods like convolutional neural networks (CNNs) show superior performance in medical image analysis but need a high-quality training dataset with a large number of annotated samples. Particularly in the medical domain, the availability of such datasets is rare due to data privacy or the lack of data sharing practices among institutes. Generative adversarial networks (GANs) are able to generate high quality synthetic images. This work investigates the capabilities of different state-of-the-art GAN architectures in generating realistic breast ultrasound images if only a small amount of training data is available. In a second step, these synthetic images are used to augment the real ultrasound image dataset utilized for training CNNs. The training of both GANs and CNNs is conducted with systematically reduced dataset sizes. The GAN architectures are capable of generating realistic ultrasound images. GANs using data augmentation techniques outperform the baseline Style- GAN2 with respect to the Frechet Inception distance by up to 64.2%. CNN models trained with additional synthetic data outperform the baseline CNN model using only real data for training by up to 15.3% with respect to the F1 score, especially for datasets containing less than 100 images. As a conclusion, GANs can successfully be used to generate synthetic ultrasound images of high quality and diversity, improve classification performance of CNNs and thus provide a benefit to computer-aided diagnostics.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3