Micro-computed tomography and brightness-mode ultrasound show air entrapments inside tablets

Author:

Carlson Craig S.12,Hannula Markus3,Postema Michiel34

Affiliation:

1. BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere , Finland

2. School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, 1 Jan Smutslaan, Braamfontein 2050, South Africa

3. BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere , Finland

4. School of Electrical Engineering, University of the Witwatersrand, Johannesburg, Braamfontein , South Africa

Abstract

Abstract Controlled disintegration of pharmaceutical tablets has been of interest for consistency checks and drug delivery. Under sonication, tablet disintegration is accelerated. This acceleration has been attributed to the existence of microscopic air pockets inside compacted tablets. In this study, we investigated the existence of such pockets by subjecting tablets to micro-computed tomography. In addition, we subjected tablets from the same batch to sonography. The tablets were measured to have an ultrasonic swelling rate of 162±16 μms−1. The micro-computed tomography images showed air pockets of up to 9 μm in diameter, some of which were visibly connected to each other. The brightness-mode images showed scattering from inside the tablets, suggesting cavitation activity. We conclude that, inside the tablets investigated, microscopic air entrapments exist, whose pulsations are detectable with brightness-mode ultrasound.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microscopic fractures shown inside tablets after impact;Japanese Journal of Applied Physics;2024-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3