Annotation Efforts in Image Segmentation can be Reduced by Neural Network Bootstrapping

Author:

Rettenberger Luca1,Schilling Marcel2,Reischl Markus2

Affiliation:

1. Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen , Germany

2. Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermannvon- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen , Germany

Abstract

Abstract Modern medical technology offers potential for the automatic generation of datasets that can be fed into deep learning systems. However, even though raw data for supporting diagnostics can be obtained with manageable effort, generating annotations is burdensome and time-consuming. Since annotating images for semantic segmentation is particularly exhausting, methods to reduce the human effort are especially valuable. We propose a combined framework that utilizes unsupervised machine learning to automatically generate segmentation masks. Experiments on two biomedical datasets show that our approach generates noticeably better annotations than Otsu thresholding and k-means clustering without needing any additional manual effort. Using our framework, unannotated datasets can be amended with pre-annotations fully unsupervised thus reducing the human effort to a minimum.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixed supervision model applied to industrial defect detection with mask convolutional enhancement;2023 16th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI);2023-10-28

2. Towards Automated Regulation of Jacobaea Vulgaris in Grassland using Deep Neural Networks;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

3. Self-Supervised Learning for Annotation Efficient Biomedical Image Segmentation;IEEE Transactions on Biomedical Engineering;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3