Cerebral cortex classification by conditional random fields applied to intraoperative thermal imaging

Author:

Hoffmann Nico1,Koch Edmund2,Petersohn Uwe3,Kirsch Matthias4,Steiner Gerald2

Affiliation:

1. 1TU Dresden, Faculty of Medicine, Clinical Sensoring and Monitoring, Fetscherstraße 74, D-01062 Dresden, Germany, Phone: +49 351 458 6443, Fax: +49 351 458 6325

2. 2Clinical Sensoring and Monitoring, TU Dresden, D-01307 Dresden, Germany

3. 3Applied Knowledge Representation and Reasoning, TU Dresden, D-01062 Dresden, Germany

4. 4Department of Neurosurgery, University Hospital Carl Gustav Carus, D-01307 Dresden, Germany

Abstract

AbstractIntraoperative thermal neuroimaging is a novel intraoperative imaging technique for the characterization of perfusion disorders, neural activity and other pathological changes of the brain. It bases on the correlation of (sub-)cortical metabolism and perfusion with the emitted heat of the cortical surface. In order to minimize required computational resources and prevent unwanted artefacts in subsequent data analysis workflows foreground detection is a important preprocessing technique to differentiate pixels representing the cerebral cortex from background objects. We propose an efficient classification framework that integrates characteristic dynamic thermal behaviour into this classification task to include additional discriminative features. The first stage of our framework consists of learning this representation of characteristic thermal time-frequency behaviour. This representation models latent interconnections in the time-frequency domain that cover specific, yet a priori unknown, thermal properties of the cortex. In a second stage these features are then used to classify each pixel’s state with conditional random fields. We quantitatively evaluate several approaches to learning high-level features and their impact to the overall prediction accuracy. The introduction of high-level features leads to a significant accuracy improvement compared to a baseline classifier.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Reference12 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3