Affiliation:
1. Institute of Control Engineering and Center for Sensor Systems (ZESS), University of Siegen, Siegen , Germany
Abstract
Abstract
A key component of an intensity-based 2D/3D registration is the digitally reconstructed radiograph (DRR) module, which creates 2D projections from pre-operative 3D data, e.g., CT and MRI scans. On average, an intensity-based 2D/3D registration requires ten iterations and the rendering of twelve DRR images per iteration. In a typical DRR implementation, the rendering time is about two seconds, and the registration runtime is four minutes. We present an implementation of the Siddon-Jacobs algorithm that uses a novel pixel-step approach to determine the pixel location of the rendering plane. In addition, we calculate the intensity of each pixel in the rendering plane using a parallel computing approach. The DRR rendering time is reduced to 10ms on average so that the registration runtime can be achieved in an average of 4.8 seconds.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献