Traditional versus Neural Network Classification Methods for Facial Emotion Recognition

Author:

Arabian Herag1,Wagner-Hartl Verena2,Moeller Knut3

Affiliation:

1. Institute of Technical Medicine (ITeM), Hochschule Furtwangen University, Jakob Kienzle Str. 17, VS- Schwenningen 78054, Germany

2. Faculty Industrial Technologies, Campus Tuttlingen, Hochschule Furtwangen University, 78532 Tuttlingen , Germany

3. Institute of Technical Medicine (ITeM), Hochschule Furtwangen University, VS-Schwenningen 78054, Germany

Abstract

Abstract Facial emotion recognition (FER) is a topic that has gained interest over the years for its role in bridging the gap between Human and Machine interactions. This study explores the potential of real time FER modelling, to be integrated in a closed loop system, to help in treatment of children suffering from Autism Spectrum Disorder (ASD). The aim of this study is to show the differences between implementing Traditional machine learning and Deep learning approaches for FER modelling. Two classification approaches were taken, the first approach was based on classic machine learning techniques using Histogram of Oriented Gradients (HOG) for feature extraction, with a k-Nearest Neighbor and a Support Vector Machine model as classifiers. The second approach uses Transfer Learning based on the popular “Alex Net” Neural Network architecture. The performance of the approaches was based on the accuracy of randomly selected validation sets after training on random training sets of the Oulu-CASIA database. The data analyzed shows that traditional machine learning methods are as effective as deep neural net models and are a good compromise between accuracy, extracted features, computational speed and costs.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart-ESP System for Emotion Strength Prediction for Static Facial Images;Wireless Personal Communications;2024-01

2. Research on Animated GIFs Emotion Recognition Based on ResNet-ConvGRU;Mathematical Problems in Engineering;2022-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3