Recognition of tenogenic differentiation using convolutional neural network

Author:

Dursun Gözde1,Balkrishna Tandale Saurabh1,Eschweiler Jörg2,Tohidnezhad Mersedeh3,Markert Bernd1,Stoffel Marcus1

Affiliation:

1. Institute of General Mechanics, RWTH Aachen University, Aachen , Germany

2. Department of Orthopaedics, RWTH Aachen University, Aachen , Germany

3. Institute of Anatomy and Cell Biology, RWTH Aachen University, Aachen , Germany

Abstract

Abstract Methodologies to assess stem cell differentiation in the culturing state are needed for regenerative medicine and tissue engineering techniques. In recent years, convolutional neural networks (CNNs), a class of deep neural networks, have made impressive advancements in image-based classification, recognition and detection tasks. CNNs have been introduced as a non-invasive cell characterization method by learning features directly from image data of unlabeled cells. Furthermore, this approach serves as a rapid and inexpensive methodology with high performance compared to traditional techniques that require complex laboratory procedures including antibody staining and gene expression analysis. Here, we studied the potential of the CNNs approach to recognize stem cell differentiation based on cell morphology utilizing phasecontrast microscopy images.We have examined the differentiation potential of bone marrow mesenchymal stem cells (BMSCs) into tenocytes, with the treatment of bone morphogenetic protein-12 (BMP-12). After treatment, the phase-contrast images of cells were obtained directly from cell culture flasks to train CNN and the differentiated phenotype of stem cells was characterized by immunostaining. CNN was able to classify the cells into three groups including non-stem cells (chondrocytes), stem cells (BMSCs) and differentiated stem cells (tenocytes) based on their morphology with 92.2 % accuracy. The presented study revealed that CNN performed faster and non-invasive cell classification task compared to traditional methodologies.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3