Periods of morgan-voyce sequences and elliptic curves

Author:

Ait-Amrane Lyes12,Belbachir Hacène3,Betina Kamel1

Affiliation:

1. USTHB/Faculty of Mathematics LATN Laboratory, DG-RSDT BP 32, El Alia, 16111 Bab Ezzouar, Algiers Algeria

2. Ecole nationale Supérieure d’Informatique (ESI) BP 68M Oued Smar, 16270 El Harrach, Algiers Algeria

3. USTHB/Faculty of Mathematics RECITS Laboratory, DG-RSDT BP 32, El Alia, 16111 Bab Ezzouar, Algiers Algeria

Abstract

Abstract We study the periods of Morgan-Voyce sequences modulo an integer m and the periods of Morgan-Voyce sequences over elliptic curves.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference14 articles.

1. Belbachir, H.—Bencherif, F.: Linear recurrence sequences and powers of a square matrix, Integers 6 (2006), A12, 17 pp.

2. Belbachir, H.—Komatsu, T.—Szalay, L.: Characterization of linear recurrences associated to rays in Pascal’s triangle. In: Diophantine analysis and related fields 2010. AIP Conf. Proc., 1264, Amer. Inst. Phys., Melville, NY, 2010, pp. 90–99.

3. Belbachir, H.—Komatsu, T.—Szalay, L.: Linear recurrences associated to rays in Pascal’s triangle and combinatorial identities. Math. Slovaca 64 (2014), 287–300.

4. Coleman, D. A.—Dugan, C. J.—McEwen, R. A—Reiter, C. A.—Tang, T. T.: Periods of (q, r)-Fibonacci sequences and elliptic curves, Fibonacci Quart. 44 (2006), 59–70.

5. Ferri, G.—Faccio, M.—D.Amico, A.: A new numerical triangle showing links with Fibonacci numbers, Fibonacci Quart. 29 (1991), 316–320.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear recurrence sequence associated to rays of negatively extended Pascal triangle;Notes on Number Theory and Discrete Mathematics;2022-03-22

2. Recurrence relation associated with the sums of square binomial coefficients;Quaestiones Mathematicae;2021-05-04

3. Unimodality, linear recurrences and combinatorial properties associated to rays in the generalized Delannoy matrix;Journal of Difference Equations and Applications;2019-08-03

4. Diagonal sums in Pascal pyramid;Journal of Combinatorial Theory, Series A;2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3