Experimental and numerical investigation of flexural behavior of balsa core sandwich composite structures

Author:

Önal Tuğberk1ORCID,Temiz Şemsettin2

Affiliation:

1. Malatya Turgut Özal University , Malatya 44210 , Türkiye

2. Mechanical Engineering , İnönü Üniversitesi , Malatya , Türkiye

Abstract

Abstract The mechanical properties of bio-core sandwich composite structures fabricated in different configurations were investigated experimentally and numerically in this study. Balsa woods with thicknesses of 4, 6, 8, and 10 mm were used in the core element. Glass fiber/epoxy composites with 8 and 12 layers at [0°]2s, [0/90°]s, and [±45°]s fiber orientation zones were used on the bottom and top surfaces of the sandwich structure. The effects of external surface fiber arrangement variation, the number of layers, and core thickness increase on the flexural damage load of sandwich structures produced by the vacuum infusion method were investigated. For this purpose, a three-point bending test was applied to the sandwich specimens. Maximum damage load values were determined using the three-point bending test performed in accordance with ASTM C-393 standard. Experimental and numerical data were compared with the finite element model created in the ANSYS package program. As a result of the tests, the damaged specimens were visualized and the types of damage to the balsa wood and composite element were determined.

Funder

Scientific Research Projects Coordination Unit of Inonu University

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3