Affiliation:
1. Malatya Turgut Özal University , Malatya 44210 , Türkiye
2. Mechanical Engineering , İnönü Üniversitesi , Malatya , Türkiye
Abstract
Abstract
The mechanical properties of bio-core sandwich composite structures fabricated in different configurations were investigated experimentally and numerically in this study. Balsa woods with thicknesses of 4, 6, 8, and 10 mm were used in the core element. Glass fiber/epoxy composites with 8 and 12 layers at [0°]2s, [0/90°]s, and [±45°]s fiber orientation zones were used on the bottom and top surfaces of the sandwich structure. The effects of external surface fiber arrangement variation, the number of layers, and core thickness increase on the flexural damage load of sandwich structures produced by the vacuum infusion method were investigated. For this purpose, a three-point bending test was applied to the sandwich specimens. Maximum damage load values were determined using the three-point bending test performed in accordance with ASTM C-393 standard. Experimental and numerical data were compared with the finite element model created in the ANSYS package program. As a result of the tests, the damaged specimens were visualized and the types of damage to the balsa wood and composite element were determined.
Funder
Scientific Research Projects Coordination Unit of Inonu University
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献