A Nelder Mead-infused INFO algorithm for optimization of mechanical design problems

Author:

Mehta Pranav1,Yildiz Betül S.2,Kumar Sumit3,Pholdee Nantiwat4,Sait Sadiq M.5,Panagant Natee4,Bureerat Sujin4,Yildiz Ali Riza2

Affiliation:

1. Department of Mechanical Engineering , Dharmsinh Desai University , Nadiad , 387001 , Gujarat , India

2. Department of Mechanical Engineering , Bursa Uludag University , Uludağ University, Görükle Bursa, 16059 , Bursa , Turkey

3. University of Tasmania , Launceston , 7250 , TAS , Australia

4. Department of Mechanical Engineering , Khon Kaen University , Khon Kaen , Thailand

5. King Fahd University of Petroleum & Minerals , Dhahran , Saudi Arabia

Abstract

Abstract Nature-inspired metaheuristic algorithms have wide applications that have greater emphasis over the classical optimization techniques. The INFO algorithm is developed on the basis of the weighted mean of the vectors, which enhances the superior vector position that enables to get the global optimal solution. Moreover, it evaluates the fitness function within the updating stage, vectors combining, and local search stage. Accordingly, in the present article, a population-based algorithm named weighted mean of vectors (INFO) is hybridized with the Nelder–Mead algorithm (HINFO-NM) and adapted to optimize the standard benchmark function structural optimization of the vehicle suspension arm. This provides a superior convergence rate, prevention of trapping in the local search domain, and class balance between the exploration and exploitation phase. The pursued results suggest that the HINFO-NM algorithm is the robust optimizer that provides the best results compared to the rest of the algorithms. Moreover, the scalability of this algorithm can be realized by having the least standard deviation in the results. The HINFO-NM algorithm can be adopted in a wide range of optimization challenges by assuring superior results obtained in the present article.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3