Effect of nano graphene and CNT addition on coating properties in friction surfacing process

Author:

Erdem Serkan1

Affiliation:

1. Mechanical Engineering , Firat University Faculty of Engineering , Elazig , 23200 , Turkey

Abstract

Abstract In this study, the wear behaviour of the composite material obtained as a result of the coating process by adding nano-size powder to the consumable rod with the friction surfacing method was investigated. An amount of 3–5 wt% nano graphene and carbon nano tube (CNT) were added into the hole drilled at a certain depth in the center of the consumable rod, and then the rod was subjected to sintering process. The obtained consumable rod was deposited on the substrate material at a certain rotational speed, horizontal and vertical progression speeds by friction surfacing method. Wear tests were carried out by subjecting the deposited surface samples to the pin-on-disc wear test. According to the results obtained, the increase in the additive ratio decreased the wear rate by approximately 30% in the 3 wt% graphene additive sample and 75% in the 5 wt% additive sample for 900 m wear distance. The same CNT additive ratios decreased the wear rate in the sample by 41% and 58%, respectively.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3