Homogenization effect on precipitation kinetics and mechanical properties of an extruded AA7050 alloy

Author:

Atapek Ş. Hakan1,Eker İrfan1,Kahrıman Fulya1,Polat Şeyda1

Affiliation:

1. Department of Metallurgical and Materials Engineering , Kocaeli University , Umuttepe Campus, 41001 , Kocaeli , Turkey

Abstract

Abstract In this study, effect of homogenization on precipitation kinetics and mechanical properties during aging in AA7050 alloy was investigated. The billet material produced by direct chill method was homogenized at 470 °C for 12–20 h and then extruded to form T-profile. The electrical conductivity of the alloy aged at 120 and 185 °C for 0–36 h were measured and precipitation kinetics were calculated based on the relationship between increased electrical conductivity and amount of precipitates during aging. Time dependent precipitation fraction change curves using Avrami equations revealed that precipitation accelerated as the homogenization time increased due to increased nucleation and growth rates of precipitates. Peak hardness values in aging were reached depending on the increase in homogenization time, however, lower peak hardness (∼185 HV) was determined at 185 °C aging compared to the obtained ones (195–197 HV) at 120 °C aging. Depending on the increase in homogenization time, an increase trend in strength was detected in peak aged alloys. The application of longer time homogenization and subsequent aging caused an increase in strengths. The studied homogenization and aging conditions could be a useful guide for achieving the highest strength and ideal elongation values in commercial practice for the AA7050 alloy.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3