Heat treatment effects on near threshold region for AISI 4340 steels

Author:

Çalışkan Salim1,Gürbüz Rıza1

Affiliation:

1. Middle East Technical University , Ankara , 06800 , Türkiye

Abstract

Abstract The microstructure effect is critical in the near-threshold region in terms of fatigue crack propagation. Despite numerous studies on the crack growth phenomenon in the literature, there is still no comprehensive understanding of the mechanism behind it. The fatigue crack growth mechanism occurs in the plastic zone region, which is quite small in size; the order is regarded as microstructural units, particularly at low stress intensities. Microstructural differences caused by heat treatment methods are frequently attributed to changes in monotonic and yield strength, resulting in differences in plastic zone size. The driving force required for crack growth under alternating loading is proportional to the plastic zone size ahead of the crack tip. When the microstructure is modified using isothermal transformations, the stress intensity near the threshold and corresponding crack propagation rates were found to be affected by stress ratio, material yield strength, particle size distribution, and impurity segregation. The crack growth threshold ΔK 0 is discovered to be inversely related to steel strength, and a relationship between ΔK 0 and cyclic yield stress is established. In the scope of this paper, annealed and tempered conditions were investigated to assess near threshold behavior for AISI 4340 steel. Effect of microstructure will be detailed around low stress intensities via performed crack growth tests.

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3