Influence of Ti and Nb addition on the microstructure, mechanical, and machinability properties of 316L stainless steel fabricated by powder metallurgy

Author:

Erden Mehmet Akif1,Uzun Fatma Gül1,Akgün Mahir2ORCID,Gökçe Hasan3

Affiliation:

1. Department of Biomedical Engineering , Karabuk University , Karabuk , 78000 , Türkiye

2. Machinery and Metal Technologies , Aksaray Universitesi , Hacılar Harmanı Mah. 12.Bulvar No: 2 (Aksaray Şehirler Arası Otobüs Terminali Karşısı) , Aksaray , 68100 , Türkiye

3. Prof. Dr. Adnan Tekin Materials Sciences and Production Technologies Application and Research Center , Istanbul Technical University , Istanbul , 34469 , Türkiye

Abstract

Abstract In this study, titanium and niobium element powders in determined amounts (0.25 and 0.5 wt%) were added into the 316L stainless steel matrix by means of powder metallurgy (PM) technology, either singly or in pairs, and the desired composition was obtained as a powder mixture. The powders used in the study were cold pressed tensile sample molds prepared in ASTM 8 M standards, unidirectionally cold pressed under 700 MPa compression pressure and formed into blocks. After pressing, the raw strength samples were sintered in an atmosphere-controlled tube furnace at 1325 °C for 2 h in an argon atmosphere. The microstructure and mechanical properties of the produced PM steels were characterized by optical microscope, SEM, EDS, and tensile test. The results showed that the stainless-steel samples with 0.25(Ti–Nb) added composition to 316L stainless steel had the highest yield strength and tensile strengths. However, with the addition of 0.5Ti, 0.5Nb, and 0.5(Ti–Nb) to 316L stainless steel, a decrease was observed in the mechanical properties. Moreover, the MQL machining is better on the machining output such as surface roughness and cutting temperature than dry machining in terms of a sustainable machining process.

Funder

Scientificc Research Projects Coordination Unit of Karabük University

Publisher

Walter de Gruyter GmbH

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference56 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3