The Determination of Absolute Values of Entropies of Hydration [ΔSabs0(H+)h]$[\Delta S_{abs}^0{({H^ + })_h}]$ and Aquation [ΔSabs0(H+)aq]$[\Delta S_{abs}^0{({H^ + })_{aq}}]$ and The Thermodynamics of Proton in Solutions

Author:

Bhattacharyya Ranjana1,Chandra Lahiri Sujit2

Affiliation:

1. Department of Chemistry, Raja Rammohun Roy Mahavidyalaya, Radhanagar, Hooghly, West Bengal, India

2. Honourary Research Advisor, Central Forensic Science Laboratory, Kolkata, India

Abstract

Abstract Absolute entropy value of H+ ion i.e. Δ S aq 0 ( H + ) = 22.2 J K 1 mol 1 $\Delta {\rm{S}}_{{\rm{aq}}}^0({{\rm{H}}^ + }) = - \;22.2{\rm{ }}J{K^{ - 1}}{\rm{mo}}{{\rm{l}}^{ - 1}}$ in aqueous solution, a fundamental parameter of importance was determined using a number of extrathermodynamic assumptions of doubtful validity. The value can in no way be regarded to be absolute or correct and needs reassessment. However, no value of the entropy change due to hydration Δ S h 0 ( H + ) $\Delta {\rm{S}}_{\rm{h}}^0({{\rm{H}}^ + })$ was available. Absolute values for entropy of hydration [ Δ S abs 0 ( H + ) h ] $[\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}}]$ (entropy change for the transfer of H+ ion from gaseous (g) state to H+ ion in aqueous solution) or entropy of aquation [ Δ S abs 0 ( H + ) aq ] $[\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{{\rm{aq}}}}]$ (entropy change for transfer of H(g) to aqueous H ion + ) ${\rm{H}}_{{\rm{ion}}}^ + )$ of H+ ion can only be calculated if the related absolute values of Gibbs energy or enthalpy changes of H+ ion i.e. [ Δ G abs 0 ( H + ) h or aq $[\Delta {\rm{G}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{{\text{h or aq}}}}$ and Δ H abs 0 ( H + ) h or aq ] $\Delta {\rm{H}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{{\text{h or aq}}}}]$ are known. Critical analysis of the methods used for evaluation of thermodynamics of H+ ion was made. Analysis of the methods showed that the methods had limitations due to defective use of Born equation and ionic additivity principle. Reference electrolyte method using TATB (tetraphenyl arsonium tetraphenyl borate, Ph4AsBPh4), Halliwell and Nyburg’s method and Noyes method or modified Noyes method of Lahiri do not give entropy values. Cluster-ion approximation method (used by Coe and co-workers) gives Δ H abs 0 ( H + ) h $\Delta {\rm{H}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}}$ and Δ G abs 0 ( H + ) h $\Delta {\rm{G}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}}$ and hence Δ S abs 0 ( H + ) h = 153.0  JK 1 mol 1 . Δ S abs 0 ( H + ) aq $\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}} = - \;153.0{\rm{ J}}{{\rm{K}}^{ - 1}}{\rm{mo}}{{\rm{l}}^{ - 1}}.\;\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{{\rm{aq}}}}$ is obtained by coupling Δ S abs 0 ( H + ) h $\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}}$ with Δ S abs 0 ( H + ) g $\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{g}}}$ [entropy of gaseous H+ ion calculated using Sackur-Tetrode equation], comes out to be –44.2 JK−1mol−1. However, Δ S abs 0 ( H + ) h $\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{\rm{h}}}$ and Δ S abs 0 ( H + ) aq $\Delta {\rm{S}}_{{\rm{abs}}}^0{({{\rm{H}}^ + })_{{\rm{aq}}}}$ determined by Lahiri and co-workers are –50.0 JK−1mol−1 and 20.0 JK−1mol−1. The values can be regarded to be accurate and reliable. Some comments on the surface potential of water towards Δ G h or aq 0 ( H + ) $\Delta {\rm{G}}_{{\text{h or aq}}}^0({{\rm{H}}^ + })$ and error ranges on the energetics of H+ and other ions are given. No attempt was made to determine entropy of hydration or aquation from theoretical calculations.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Reference117 articles.

1. H. Strehlow, In: The chemistry of non-aqueous solvents, (Ed. J. J. Lagowski) Academic Press, New York (1966) and references cited therein.

2. O. Popovych, Crit. Rev. Anal. Chem. 1 (1970) 73.

3. O. Popovych, In: Transfer activity coefficients (medium effects), (Eds. J. M. Kolthoff and P. J. Elving) Treatise on Analytical Chemistry, 2nd Ed. Part-I, Volume I, Chapter 12, Wiley, New York (1978).

4. O. Popovych, R. P. T. Tomkins, Non-Aqueous Solution Chemistry, Wiley, New York (1981).

5. J. Padova, In: Water and aqueous solutions, (Ed. R. A. Horne) Wiley-Interscience, New York, London, Sydney, Toronto (1972) Chapter-4.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3