Chemical Synthesis and Characterization of Nano Alumina, Nano Composite of Carbon–Alumina and Their Comparative Studies

Author:

Krishnan Saravanan Vanal1,Palanivelu Sivakumar1,Ambalam Muthu Manickam Muthukaruppan1,Venkatesan Ragavendran2,Arivalagan Muthukumar2,Pearce Joshua M.345,Mayandi Jeyanthinath2

Affiliation:

1. Combat Vehicles Res. & Dev. Estt. (CVRDE) DRDO , Chennai 600054 , India

2. Department of Materials Science, School of Chemistry , Madurai Kamaraj University , Madurai 625021 , India

3. Department of Electronics and Nanoengineering , School of Electrical Engineering, Aalto University , Espoo , Finland

4. Department of Materials Science and Engineering , Michigan Technological University , Houghton, MI 49931 , USA

5. Department of Electrical and Computer Engineering , Michigan Technological University , Houghton, MI 49931 , USA

Abstract

Abstract Aluminium oxide (Al2O3) nano particles were synthesized by using both the sol gel technique and solid state reaction (SSR) method. Different proportion of nano carbon cones from 0.5% to 3.5% is doped with aluminium nitrate nano hydrate and annealed subsequently at 1000°C for 3 h to synthesize the nano composite of carbon–alumina. The synthesized samples were characterized by X-ray diffraction to identify the presence of different phases and transitions during this process. The average crystallite size of the nano alumina is found to be 45 nm by sol gel and 43 nm by SSR method respectively by Debye–Scherrer method. Average crystallite size and lattice strain of nano alumina are also estimated from Williamson Hall (WH) plot analysis. It is found to be 69 nm with the strain of 3.3×10−3 in sol gel, and in SSR method, it is 72 nm with the strain is 3.9×10−3. The interplanar distance of various planes of alumina are estimated and compared with JCPDS values. Similar analysis has also been extended for the nano composite of carbon–alumina. The surface morphology of the samples are analyzed using scanning electron microscopy and rough estimate of the crystallites is also given. From the Raman analysis, the presence of alpha phase of alumina has been confirmed. The presence of carbon in the composite has been established through diffuse reflectance spectroscopy. The FTIR spectra of the composite samples ensured the presence of Al–O–Al, O–H and C=O bonds.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3