Highly Dispersed CuNi Nanoparticles Supported on Reduced Graphene Oxide as Efficient Catalysts for Hydrogen Generation from NH3BH3

Author:

Du Xigang1,Tai Yuping1,Liu Hongyu1,Zhang Jun1,Su Mengfan1,Li Fengyu1,Wang Shumeng1

Affiliation:

1. School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology , Luoyang 471003, China

Abstract

Abstract Highly dispersed CuNi nanoparticles (NPs) immobilized on reduced graphene oxide (RGO) were synthesized via the simple in situ co-reduction of an aqueous solution of Copper(II) sulfate pentahydrate, nickel chloride hexahydrate, and graphene oxide (GO) by the reduction of ammonia borane (AB) at room temperature. The powder XRD, FTIR, EDS, and TEM techniques were used to charaterize the structure, size, and composition of the CuNi/RGO catalysts. The as-prepared CuNi/RGO catalysts showed excellent catalytic performance toward the hydrolysis of AB at room temperature. Compared to Cu/RGO, Ni/RGO, and the RGO-free Cu0.6Ni0.4 counterpart, the as-prepared Cu0.6Ni0.4/RGO catalysts showed much better catalytic activity. Furthermore, kinetic studies showed that the catalytic hydrolysis of AB by Cu0.6Ni0.4/RGO has zero order dependence on the AB concentration, but first order dependence on the catalyst concentration. The turnover frequency (TOF) of Cu0.6Ni0.4/RGO catalyst for the hydrolytic dehydrogenation of AB was determined to be about 20.2 mol H2 (mol Cu0.6Ni0.4/RGO)−1 min−1 at 25 °C. In addition, the activation energy (Ea ) of Cu0.6Ni0.4/RGO was determined to be around 17.7 kJ mol−1, which is one of the lowest activation energy’s of the reported metal-based catalysts.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3