Water Adsorption on Ideal Anatase-TiO2(101) – An Embedded Cluster Model for Accurate Adsorption Energetics and Excited State Properties

Author:

Petersen Thorben1,Klüner Thorsten2

Affiliation:

1. Carl von Ossietzky University, Institute of Chemistry , Carl-von-Ossietzky-Str., 9-11 , 26129 Oldenburg , Germany , Tel.: +49 441 798 3963

2. Carl von Ossietzky University, Institute of Chemistry , Carl-von-Ossietzky-Str., 9-11 , 26129 Oldenburg , Germany

Abstract

Abstract A combined theoretical approach towards the accurate description of water on anatase-TiO2(101) was pursued in this study. Firstly, periodic slab calculations on the basis of density hybrid functionals (PBE0, HSE06) were performed in order to gain insight into the adsorption sites and geometric structure of the surface. For submonolayer coverage of H2O, the molecular adsorption of water is found to be the most stable one with quite similar energetics in PBE0 and HSE06. Moreover, the transition states towards the less preferred dissociative adsorption forms are predicted to be greater than 0.7 eV. Thus, water will not spontaneously dissociate and based on the Computational Hydrogen Electrode model an overpotential of about 1.71 V is needed to drive the overall oxidation. In addition, to validate our results for molecular adsorption of H2O, an embedded cluster model is carefully evaluated for the a-TiO2(101) surface based on the periodic slab calculations. Subsequent high-level DLPNO-CCSD(T) results are in close agreement with our periodic slab calculations since the interaction is found to mainly consist of electrostatic contributions which are captured by hybrid functionals. Finally, first results on optimized geometries in the excited state based on the photogenerated charge-transfer state are presented.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3