Preparation, Characterization and Evaluation of Curcumin Nanodispersions Using Three Different Methods – Novel Subcritical Water Conditions, Spontaneous Emulsification and Solvent Displacement

Author:

Sayyar Zahra1,Malmiri Hoda Jafarizadeh1

Affiliation:

1. Faculty of Chemical Engineering , Sahand University of Technology , Tabriz , 51335-1996, Iran

Abstract

Abstract Curcumin as a lipophilic bioactive compound can be incorporated into water-based formulations when it turns into curcumin nanodispersions. In fact, nanodispersion systems, increase curcumin bioavailability, solubility and stability, and furthermore increase curcumin uses in aqueous food and pharmaceutical formulations. Present study focuses on the preparation of curcumin nanodispersions under subcritical water conditions (temperature of 120 °C and pressure of 1.5 bar for 2 h) and using selected another two different methods namely, spontaneous emulsification and solvent displacement. Lecithin as carrier oil, Tween 80 as emulsifier and polyethylene glycol as co-surfactant, with a ratio of 1:8:1, were used in all the preparation techniques. Obtained results indicated that curcumin nanodispersions with smallest mean particle size (70 nm), polydispersity index (0.57), curcumin loss (5.5%) and turbidity (0.04 Nephelometric Turbidity Unit), and maximum loading ability (0.189 g/L), loading efficiency (94.5%) and conductivity (0.157 mS/cm) were obtained under subcritical water conditions. The results also exhibited that the prepared spherical curcumin nanoparticles in the water by this technique had desirable physical stability as their mean zeta potential value was (−12.6 mV). It also observed that, as compared to spontaneous emulsification and solvent displacement methods, the prepared curcumin nanodispersions via subcritical water method had highest anti-oxidant and antibacterial activities.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3