Olive Mill Wastewater (OMW) Phenol Compounds Degradation by Means of a Visible Light Activated Titanium Dioxide-Based Photocatalyst

Author:

Cuomo Francesca1,Venditti Francesco2,Cinelli Giuseppe1,Ceglie Andrea1,Lopez Francesco1

Affiliation:

1. Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), Università degli Studi del Molise, Via De Sanctis, I-86100 Campobasso, Italy

2. Consorzio per lo Sviluppo Industriale della Valle del Biferno (COSIB), 86039 Termoli, Italy

Abstract

Abstract The use of titanium dioxide as heterogeneous photocatalyst is drawing considerable attention for water and air purification and remediation. Recently, TiO2 particles have been modified in order to make this material attractive for industrial and environmental remediation usage. In the present study, phenolic compounds of olive mill wastewater (OMW) were degraded in the presence of glucose-doped titanium particles (CDT) through a photocatalysis process activated by visible light. The photocatalyst effectiveness towards the polluted wastewater from olive oil industry was tested on systems having different initial concentrations of phenols and in the presence of different amounts of CDT. For kinetic analysis the role of Ti/TPh ratio (amount of catalyst/amount of total phenols) was investigated. The rate constant (k 2) and the amounts of species adsorbed on adsorbent at equilibrium (q e ) of each reaction were calculated by fitting kinetics data to a second-order kinetic adsorption model. The results collected at different Ti/TPh ratios showed that the amount of phenols that can be removed from the water solution linearly increases with the Ti/TPh ratio till a maximum value (optimal ratio) at which no further degradation of phenolic compounds was obtainable. Such kind of parameter allows to identify the optimal value of catalyst and the initial substrate concentration for a high level of degradation. The results showed in this study can have an important impact for an applicative point of view.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3