Ignition of Combustible Dust Clouds by Strong Capacitive Electric Sparks of Short Discharge Times

Author:

Eckhoff Rolf K.1

Affiliation:

1. University of Bergen , Department of Physics and Technology , Bergen , Norway

Abstract

Abstract It has been known for more than half a century that the discharge times of capacitive electric sparks can influence the minimum ignition energies of dust clouds substantially. Experiments by various workers have shown that net electric-spark energies for igniting explosive dust clouds in air were reduced by a factor of the order of 100 when spark discharge times were increased from a few μs to 0.1–1 ms. Experiments have also shown that the disturbance of the dust cloud by the shock/blast wave emitted by “short” spark discharges is a likely reason for this. The disturbance increases with increasing spark energy. In this paper a hitherto unpublished comprehensive study of this problem is presented. The work was performed about 50 years ago, using sparks of comparatively high energies (strong sparks). Lycopodium was used as test dust. The experiments were conducted in a brass vessel of 1 L volume. A transient dust cloud was generated in the vessel by a blast of compressed air. Synchronization of appearance of dust cloud and spark discharge was obtained by breaking the spark gap down by the dust cloud itself. This may in fact also be one possible synchronization mechanism in accidental industrial dust explosions initiated by electrostatic sparks. The experimental results for various spark energies were expressed as the probability of ignition, based on 100 replicate experiments, as a function of the nominal dust concentration. All probabilities obtained were 0%<p<100%. A tentative mathematical model could be fitted to all the data, assuming that the life time of the spark channel as an effective ignition source increased with the spark energy, that the minimum time of contact between the spark and the dust cloud for ignition to occur was a function of spark energy and nominal dust concentration, and that the stochastic element was the statistical distribution of the time interval between spark appearance and re-establishment of contact between spark channel and dust cloud, following detachment of the dust cloud from the spark by the shock/blast wave emitted by the spark discharge.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Reference16 articles.

1. R. K. Eckhoff, Explosion Hazards in the Process Industries, 2nd edition. Elsevier, Amsterdam (2016).

2. R. K. Eckhoff, The energy required for the initiation of explosions in dust clouds by electric sparks, M. Phil. thesis, University of London, UK (1970).

3. K. C. Brown, G. J. James, Dust Explosions in Factories, S.M.R.E. (Safety in Mines Research Establishment), Report No. 201 (1962).

4. A. R. Boyle, F. J. Llewellyn, J. Soc. Chem. Indus. Trans. 69 (1950) 173.10.1002/jctb.5000690604

5. L. A. Line, H. A. Rhodes, T. E. Gilmer, J. Phys. Chem. 63 (1959) 290.10.1021/j150572a037

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3