Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations

Author:

Esmaiel Muhammad H.1,Basuony Hany A.1,Al-Nawasany Mohamed K.1,Shulkamy Musab M.1,Shaaban Ibrahim A.1,Abuelela Ahmed M.1,Zoghaib Wajdi M.2,Mohamed Tarek A.3

Affiliation:

1. Department of Chemistry , Faculty of Science (Men’s Campus), Al-Azhar University , Nasr City 11884, Cairo , Egypt

2. Department of Chemistry , Sultan Qaboos University , P.O. Box 36 , Al Khod, Muscat , Oman

3. Department of Chemistry , Faculty of Science (Men’s Campus), Al-Azhar University , Nasr City 11884, Cairo , Egypt , e-mail:

Abstract

Abstract Raman (3700–100 cm−1) and infrared (4000–400 cm−1) spectra of 2,5-Dimercapto-1,3,4-thiadiazol (DMTD) were recorded in the solid phase. Six structures (16) were initially proposed for DMTD as a result of thiol-thione tautomerism and internal rotation(s) of thiol group(s) around the C–S bond. Quantum chemical calculations were carried out for an isolated molecule (16) using density functional theory (B3LYP) and ab initio MP2(full) methods utilizing 6-31G(d) and 6-311++G(d,p) basis sets which favor thiol-thione tautomerism (structure 4). Relaxed potential energy surface scans of structure 4 revealed an additional conformer (the thiol group is out-of-plane, structure 7) using the aforementioned methods at 6-311++G(d,p) basis set. For additional verification, plane-wave solid state calculations were carried out at PW91 and PBEsol came out in favor of conformer 7. This is in agreement with the computed/observed SH in-plane bending of S-7 (959/941 cm−1) rather than the one estimated at (880 cm−1) for S-4. Moreover, the observed split IR/Raman bands were found consistent with solid state calculated frequencies of S-7 assuming two molecules per unit cell bonded via H-bonding intermolecular interactions. Aided by vibrational frequency calculations, normal coordinate analysis, force constants and potential energy distributions (PEDs), a complete vibrational assignment for the observed IR and Raman bands is proposed herein. Furthermore, we have estimated the frontier molecular orbitals and atomic charges to account for the corrosion inhibition efficiency of DMTD along with its binding sites to the metal surface. Our results are discussed herein and compared to similar molecules whenever appropriate.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3