Solid-State NMR to Study Translational Li Ion Dynamics in Solids with Low-Dimensional Diffusion Pathways

Author:

Volgmann Kai12,Epp Viktor13,Langer Julia3,Stanje Bernhard3,Heine Jessica12,Nakhal Suliman4,Lerch Martin4,Wilkening Martin13,Heitjans Paul12

Affiliation:

1. Institute of Physical Chemistry and Electrochemistry , Leibniz Universität Hannover , Callinstr. 3 – 3a, D-30167 Hannover , Germany

2. ZFM – Center for Solid State Chemistry and New Materials , Leibniz Universität Hannover , Callinstr. 3 – 3a, D-30167 Hannover , Germany

3. Institute of Chemistry and Technology of Materials, Christian Doppler Laboratory for Lithium Batteries , Graz University of Technology (NAWI Graz) , Stremayrgasse 9 , A-8010 Graz , Austria

4. Institut für Chemie, Sekr. C2 , Technische Universität Berlin , Straße des 17. Juni 135 , D-10623 Berlin , Germany

Abstract

Abstract Fundamental research on lithium ion dynamics in solids is important to develop functional materials for, e.g. sensors or energy storage systems. In many cases a comprehensive understanding is only possible if experimental data are compared with predictions from diffusion models. Nuclear magnetic resonance (NMR), besides other techniques such as mass tracer or conductivity measurements, is known as a versatile tool to investigate ion dynamics. Among the various time-domain NMR techniques, NMR relaxometry, in particular, serves not only to measure diffusion parameters, such as jump rates and activation energies, it is also useful to collect information on the dimensionality of the underlying diffusion process. The latter is possible if both the temperature and, even more important, the frequency dependence of the diffusion-induced relaxation rates of actually polycrystalline materials is analyzed. Here we present some recent systematic relaxometry case studies using model systems that exhibit spatially restricted Li ion diffusion. Whenever possible we compare our results with data from other techniques as well as current relaxation models developed for 2D and 1D diffusion. As an example, 2D ionic motion has been verified for the hexagonal form of LiBH4; in the high-temperature limit the diffusion-induced 7Li NMR spin-lattice relaxation rates follow a logarithmic frequency dependence as is expected from models introduced for 2D diffusion. A similar behavior has been found for Li x NbS2. In Li12Si7 a quasi-1D diffusion process seems to be present that is characterized by a square root frequency dependence and a temperature behavior of the 7Li NMR spin-lattice relaxation rates as predicted. Most likely, parts of the Li ions diffuse along the Si5 rings that form chains in the Zintl phase.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3